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FOREWORD

This - is the second of three volumes of a final report entitled
"Buckling of Shells of Revolution with Various Wall Constructions". The

three volumes have the following titles:

Vol. 1 Numerical Results
Vol. 2 Basic Equations and Method of Solution

Vol. 3 User's Manual for B@S@R

The work described in these volumes was carried out under Contract NAS 1-6073

with the National Aeronautics and Space Administration.
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ABSTRACT

Volume 1
Volume 1 presents the results of a parameter study performed with the

computer program B@S@PR (Euékling Of Shells Of Bevolution) which 1s described
in Volume 3. The axisymmetric collapse and the nonsymmetric bifurcation
buckling bebavior is studied for cylinders, cones, and spherical and toroidal
shell segments subjected to axial compressive loads. Particular emphasis iﬁ
placed on the effects of eccentricity in load application and on the

influence of elastic end rings.

Volume. 2
Volume 2 presents the equations on which the computer program B¢S¢R is

based, as well as the method of solution of the equations. In addition, a

set of more general stability equations is given in an appendix.

Volume 3

Volume 3 presents a comprehensive computer program (B¢S¢R) for the
analysis of shells of revolution with axisymmetrlc loading. The program
includes nonlinear prebuckling effects and is very general with respect to
geometry of meridian, shell wall design, edge conditions, and loading. Despite
1ts generality the program is easy to use. Branches are provided such that
for commonly occurring cases the input data involves only basic informatiocn
such as geometrical and material propertles. The computer program has
been verified by comparisons with other known solutions. The cards and a
computer listing for this program are available from COSMIC, University of

Georgia, Athens, Georgia, 30601.
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NOTATION

gee BEq. (41)

see Eqs. (53), (55) and (62)
see Egs. (52) and (54)

see Eq. (k1)

boundary condition coefficients at A, see Egqs. (43) and (T7h)
boundary condition coefficients at B, see Egs. (43) and (T4)

coefficients of constitutive equations, see Eq. (1)

see Eq. (42)

see Egs. (60)

eccentricity (distance from shear center of shell wall to point
of load application, positive outward)

horizontal (radial) force/unit length (see Fig. 5)
Gaussian curvature

curvature of deformed shell

shell length (cylinders only)

moment resultant, applied externgl moment

Mo+ My

stress resultant
nunber of circumferential waves in buckling pattern
total axial load applied to shell, positive compression

normal pressure, positive internal

vii



shear load/unit length (see Fig. 5)

radius of curvature

horizontal radius from axis of rotation to middle surface
arc length measured from point A (see Fig. 5)

meridional displacement

horizontal (radial) displacement

veritical (axial) displacement

circumferential displacement

vertical (axial) force/unit length

applied verticial torce to shell, positive for tension
normal displacement, positive outward

see Eq. (52)

meridional rotation (also winding angle for fiber-reinforced shells)
middle surface strain

change in curvature

stress function for prebuckling problem ¢ = rH

Airy-type stress function

loading parameter, e.g. p/pcr

circumferential coordinate

see Egs. (50)
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Subscripts and superscripts

differentiation with respect to arc length s
differentiation with respect to circumferential coordinate ¢
differentiation with respect to x

pertains to meridional direction

pertains to clrcumferential direction

shear resultant, twisting moment, twisting change in
curvature

prebuckling gquantity
critical load
at end A of the meridian (see Fig. 5)

at end B of the meridian (see Fig. 5)
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Section 1

CONSTITUTIVE RELATIONS

In their most general form the relations between stresses and strains can

be written as

er ) ’_C.n Cip O3 Cy G5 Cpg | s )

Na Ca1 Cap Cp3 Cop Cp5 C6 A

<Nl2 7= % G2 C33 O O35 Ox f10 p (1)
My “b1 Cuz Cu3 Cun Cus Cug Ko

My 51 Cs2 €53 Csu C55 Csg Ka

) Lo %2 %3 Cev %65 s | "12)

The stiffuness coefficients, CiJ y» are determined here in texrms of the

elastic and geometric properties of some common types of shell wgll design.

In the following discussion and in the numerical analysis the CiJ are
assumed to be independent of the meridional arc length. There are cases (such
as meridionally stiffened spherical domes or shells of variable thickness) for
which the CiJ vary along a meridian. However, for the shells investigated

in the numerical analysis presented here the CiJ are almost constant.




As in Ref. 1 the stiffness coefficients are obtained by use of the
strain energy expression for the deformed shell. The strain energy, U, 1is
expressed in terms of etrains and changes of curvature, and the coefficlents
are found as follows: Let a subscript 1 following a comma indicate
differentiation with respect to. one of the strains or changes of curvatures
such that for 1 =1, 2, 3, 4, 5, 6 derivatives are taken with respect to 6 ¢
€ 1 65 ¢ Ky Ky o Kip v respectively. Then

Ciy = Uy (2)
The derivation of the constitutive equations will be shown in detail here

only for one example, the fiber-reinforced shell.

1.1 Fiber-reinforced Shells

In general fiber-reinforced shells are composed of several layers, with
the fibers unidirectional in each layer. The properties of each layer are
determined by use of the equations given by Tsal in Ref. 2'+ Current
fabrication techniques generally result in shells in which the layers appear
pair-wise, one layer with the winding angle + B and one with the angle - B with
respect to the meridian. Here the elastic properties for each pailr of layers
are first established and finally the elastic constants are derived for a

shell wall composed of a number of double layers.

For each layer the followlng properties are required:

Ef = modulus of fibers



v = Poisson's ratio for fibers

by
Em = modulus of matrix

Vp ° Poisson's ratio for matrix
t =  thickness of double layer
B = angle of wind
X = matrix content (by volume)

Additional parameters are the two correction factors introduced by Tsal:
the misaligoment factor, k.,and the contigulty factor, ¢. For structures that
are wound with prestressed fibers it appears reasonable to assume k = 1.0
(no misalignment). The contiguity factor has to do with the stiffness per-
pendicular to the fiber direction (C = O for isolated filaments and C = 1
for contiguous filaments). The factor C is higher, of course, if the matrix
content is low, but it is generally closer to O than to 1. Tsal obtalns good

agreement between theory and test with C = 0.2.

The moduli Ell and E22 in directions parallel and perpendicular to the
fibers, the shear modulus G, and Poisson's ratio v, p are given in Ref, 2 in
terms of fiber and matrix properties (Ef. Vs Em' vm). It can be shown

that

vy = VyEpofEpy (3)

Mid _ .



and

2 .2 s
=3 1 1 o1
€ €’ Cos B + ¢ 8in ﬂ + ¢ cos ﬂ 8in ﬁ

1
¢ a2 . 2, ._. X L
€ = €, 8in B + ey cos /3_. ‘:'cy cos # 8in 8 (&)
a2 = c)'cy\(coszp - sin2 B) + 2(€;- G;‘) cos B sin B

where €>'c and g}" represent the strains in the meridional and circumferential
L]
directions, ey v represents the corresponding shear strain and € ' 6 €9

are strains with respect to a coordinate system which is rotated an

angle B .

The strains at the middle surface of the double layer are e ' Sy ! ey

and the changes of curvatures are Kx ’ ‘y ' xxy + Hence
Layer 1 Layer 2
i ' - L
e'=€x+4xx exﬂex 4Kx
{ 1 t ( 5)
= - 2 €. - K
€ ey + 1 Ky € y 1y
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X

‘2 = (ex + %x )ainzp-f- (ey + i—xy)coszﬂ - (exy + %"xy) cos B sin 8 (5 )

= 3 23 - gin? t, ¢ L .
€12 (exy+4x,q)(cosﬂ sin ﬂ)+2(€y+4xy € 4xx)cosﬂsmﬂ

Ky) ainz g - ("xy - %ny) cos B 8in

e

€G- (ex -%xx)coazﬂ + (ey -

€ = (Gx -%Kx)sinzp-o- (Gy --‘ti-xy}coszﬁ +(°xy -%ny) cos B 8in B (7

t .
€12 ™ (‘xy - zxw)(coszﬂ - emzﬂ) - 2<ey - -;—xy - ‘x + %xx)oosﬁsmﬂ

The following expressions for the changes of curvature apply in the

reference systems with coordinates parallel or perpendicular to the fiber directions

2 .2
KL ™ K, cos” g+ xy sin ﬁi?“xy cos B sin 8

- 2 2 .- -
Ky = K sin”f + K, €08 ﬁ+2xxy cos B sin B ( 8)

K12 = "xy (coa2 B - smz B8) & (xx - xy) cos Bsin B

where, when there are double signs, the upper appiies to Layer 1 and the lower

to Layer 2.




Toae svcain energy density in the double layer is

2 2
€. B € L 2v_. B
1711 + 2 22 12722 €€+GY§2

¢
2|1 = vip¥py A=WV 1= Wppvp 12

U-
{ 9)

3 E E 2v. E
t [ 11 2, _Foz 2, "12"n leawmz]

+ K ~
812 (1 = V12v21) 17 1wl 2 1=v,v,, 12

Substitution of Egs. (6),(7): and(8) into Eq.(9) and subsequent appli-
cations of Eq.(2) gives the stiffness coefficients for one (double) layer.

The matrix [Ci JJ is diagonally symmetrical. Thus there are 21 independent

constants. The non-zero Ci J's are

= .—t__ 4 . 4 2 2
i1 T-v v [Ell cos B+ E22 sin” f + {2u12E22+4G(1 - v12v21)}cos B sin ﬁ]

& —t - . 2 2 4 4
Cia = 1= V2o HEll +E,, - 4G(1 - Vlzvzl)} sin“Bcos” B + v19E,o(c08 B+ sin ﬂ)]

t2

Cl6 " i<y

. 2 .2 2 2
12”21) sinB cos B [Ell cos“ E22 sin“ g + v12E22 (s1n“B - cos“B)

-2G(1 - )(cos2 B~ sin® ﬁ)]

V12¥21
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t . 4 4 - (02 ]
. — [En sin” B+ E,, cos” B+{2v ,E,, +4G(1 = v,,v,,)}sin"Bcos”p

22 1~ Vi9¥21
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12721
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- t 2 2
Cog = T -0, [(E +E,, = 2v1,E,,) cos” B sin” 8
2 . 2
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____t2 . 2 2 2 2
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2 .2
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tz 2 2
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+2G(1 -~ v, _v. )(cos? g - sin? a)}
12 21
c,,6 = ta { cos4‘ B+E sin B+ (2 +4G) ein2 B cos2 B}
44 " 1T - v ) 22 V12F22
- £ { inZ 8 cos?B (E,, +E,_ =4G)+v. E (cos“pum‘m}
%8 = THT-v v, |F0 Peos A(E, +Eyy V1a¥22
£3 4 2 2
0.55 - 12(1 = v12v21) [E 1 8in" 8+ E22 cos® B+ (u12 22 +4G-) 8in“ B cos p]
38 .2, .2 3
C o L cos”Bsin“g - i t 2 . 2.2
66 3(1=- v12v21) [E11 r‘zz V12E22] +5! G (cos“B - sin” B)

( 10)



In general a fiber-reinforced shell is composed of a number of double

layers. The elastic properties for each of these are obtained from Egs. ( 10).

Hence for the ith layer

N:j[ C:iLl ei + Ciz ‘; + Ci6 Ko
Né - Cie ei + 022 % + Cg6 K10
Nie = c§3 €_le2 + Céu K+ 025 K,
Mi = Cgu Gie + O K+ Cis K5
M; = CéS e:iLz + Cli+5 K+ cés K,
Mp = Clg e+ CigKy + CggKip

i . .
Here € e; » and €i2 are strains at the midplane of the ith layer. The

strain density in one layer can be written in the form

i_ 1|4 siye i0i i i i ogiy2
u o= 2[011 <€1) + 20 e g * 2056 Kot Oy (62)
i1 i i.2 i1 ii

+ 20 e K+ Cog (912> + 205 ep K + 2055 gk (11)

+ Ciu(ﬂ)z + ecli+5 Ky Ky o+ cés (x2)2 '”326 (xm)e/

I € » & ' ¢p BT strains at any given reference surface the strains

in the individual layers are given by

& T e T b Ky

1 = -h K

€2 & = B %y ( 12)
> o= 2h, K

€12 &2 i%2



where h1 is defined in Fig. 1

REFERENCE
SURFACE
' A
z
INNER
bi ¢ ;t//;f’ SURFACE

Fig. 1 Layered Shell

If the total number of layers is I , substitution of Egs. ( 12) into

Eqs. ( 11) and subsequent application of Egs. ( 2) yields

Cj; = 2 cil Cp = X Ciz

Ci3 = O ¢y = X -n Cp,
C)5 = N - hy O g = T O
Cp = T Co Cp3 = O



Cyp = -2 hy €, = s Cps = - 2By Coa

%6 = L s C3 = 2Oy

Gy, = 20y G35 = 2 C3s

0y =-22 hic;3 oy = S 2cl +ch)

s = 2 (g ¢} 12 Clts) Cg = - 2.1 (026 + Cis )

O55 = 2 (o ; Coa * 55) Cog = = by (Cés + 0;5)

Ceg = E: (4 " 33 + 026) | (13)

where
2: i=l
For this example as well as for all other types of shell walls considered here
the reference surface is chosen such that
036 = 0

That is I
(Z Py C33> <§1 Cga)

The present stability analysis 1s restricted to the case in which axially
symmetrical loads on the shell lead to axially symmetrical prebuckling

deformations. Consequently the analysis is applicable only if

10



] =

13 = Cyp =

Cl6

According to Egs. ( 13) only C

13 and 02

3 are zero, but it appears that in

most cases the remaining constants in Eqs.( 1llt)are negligible.

For the present analysis it will thus be assumed that

(15)

Ny % Cp e #C1p ep + Oy K + 05 Ky
Ny % Cypoep #0pp ep + 0y Ky +Cp5 Ky
Niog = C33 ep
My = Coy g 0oy e+ Oy Ky + Oy Ky
My = Cig e *Cpg en+ Cygky + Cgs Ky
Mp = CeeKip

where the

constants are given by Egs. ( 13)

Stiffness coefficients for a number of shells of different wall constructions

have been derived in a similar way and the resilts are presented below.

1.2 Shells Stiffened by Rings and Stringers (isotropic skin)

For the determination of the coefficients of Egs.(15), the following

properties are required:
For skin E Young's modulus
v Poisson's ratio

t thickness

11



For stiffeners

a Spacin
i 24

A Cross~-sectional area

I Moment of inertia of cross-section around its

H neutral axis parallel to skin

J“ Torsional constant

Xp Distance from neutral surface 1o skin midplane
Eu Young's modulus

G“ Shear modulus

Position (outside or inside)

These data are for stringers if the subscript u equals one and for rings if it

equals two. For the special case of integral rectangular stiffeners it is

sufficient to define the spacing and

bu Stiffener width

hu Stiffener height

For this case

A =Db h
b ko

T =b Bb/12
m "

N 3 3
== Min (b b”°, b h
W 73 n(u u'#u)
x = (b +1t)/2
" H
E =E
b

G, = E/[2(1 + v)]

12

(16)



For brevlity the following parameters are introduced

By

]

(1 -v%) /()

(1 - v5) /(s ay)

(1, + A X5 (1 - v3)/(gy ¥)
(I, + Ay X3) (1 - v5)/(ay %)
(1 -v®) 6 5/(a tE)

(1 - v?) ¢, 3,/(a, ¢ E)

E /(1 - v2)

(17)

With the skin middle surface as reference surface the stiffness coefficilents are

11

Cio

Ciy

015

Coo

Coy

Cos5

C33
Cuusy
ChS
®s5

Ces

¢ (1 +'Hl)

p C

=X w C

=0.5(1L~-v)C

¢ [(x+m)+ 2/123

v C t2/12

¢ [(1+1,)+ +2/12)

C %2 (1 =v) + Ty + 05l

These constants are identical to those in Ref. 3

13

( 18)



1.3 Shells with Skew Stiffeners

It is assumed that the skin is isotropic,and that the stiffeners are

rectangular monolithic

The following information is required

For skin E Young's modulus
" Poisson's ratio
t thickness
For stiffener 0 angle between stiffener and generator
d spacing (see Fig. 2 )
b width
h height

Position (outside or inside)

Fig. 2 Skev gtiffeners

14



The following notations are introduced:

E t/(1 - +°)

Q
u

b= 2bh (1-2)/(at)

'Y2 = t2/12

M = bl (1-v2)/(64at1)
N, = 2hb3 (1 - v)/(34dt)

p = 0.5(h+t)
o = o/[L + 24 cos 6 sinee/(l - )] ( 199
Py = 1+ (1 - v)/(2n cos @ s1n%8) ]

where Po is the distance from the skin's midsurface to the reflerence surface.

For the case of internal stiffeners p is negative.

The stiffness coefficients are

Cll

Ci2

Cun

C15

Coo

Co

025

€33

Cuy

C(L+p cos3e)
2
C (v + u cosb sin @)
c (o, - coe3e)
2" 8
¢ (v p,= u p, cosd sin2e)
2 1
C(L+p sinue/cose)
2
C (v pp~ b p cosO 8in"0)
¢ (p, - sinhe/cose)
o= kB
0.5 (1L = v) + u cosd 5109

C[Y2 + pg + (@ pi +7) cos3e + Mp 61020 cosd ]

15



= 2 2 2
CMS = Clwy +v pp + (w Py + T) cos® sin%g - Mg sin°g cos ]
o = C [y? + p2 + ( p2 + 1) sinhe/cose + 1) sin0 c 0] ( 20)
55 S ] T 8
~ 2 2
Ceg = C (1 -v) ¥+ 2 (1-v) pé+h-(p pi + 1) cos8 sinee

+ M 005226/c056]

1.4 Orthotropic Skin with Stiffeners

For the shell without stiffeners the following relations apply:

Ny = Cyp e+ Cp e+ Oy K+ 615 Ky

Ny = Cppoeg *+Chpoap+ Oy Ky + Cos %o

Nip = 633612

Moo= Cpey Gy e+ G Ky + G K,y

M, = élssl + 525 e 6&5 Kl + 555 K,

My = CegKip (2)

The most general case allowed then is a "skin" which is composed of a

number of orthotropic layers. The Eij's could for instance be obtained through

application of the Egs. ( 13)to a fiberglass reinforced shell

In addition the following information is required:

total thickness

(!

For skin t

distance from inner surface to shear center

N
1

16



For stiffeners

The subscript u again is one

for rings

Set

The following stiffness

combination

11
12
C1y
15

22

a 3
h
A
H defined under "Shells Stiffened
IM by Rings and Stringers"
r
J
"
E
"
GH J
X distance from the neutral axis
o of stiffener to the closest

skin surface.

for stringers (meridional stiffeners) and two

t -z for inside stiffeners
( 22)

-z for outside stiffeners

constants are obtained for the skin and stiffener

= Cpp + By A)/a)

= Cp

= C ) + X E; Al/dl

14 1

C15

= C,, + By A2/d2

17



Con = Oy

Cos = Cpg + X, By A2/d2
€33 = Cs3
_ = 2
Cupp = Oy + By (T + X} A/
cu5 = Gy
_ 3 2
Co5 = Cog+ By (I + X5 45)/d,
. ( 23)
Cog = Cgg * G Jl/dl + Gy J2/d2

These equations may be used also 1f stringers and rings are added to the

configurations discussed in the sequel.

1.5 Layered Shells

For layered shells the stiffness coefficients can be established on
basis of the following information:
I Number of layers
3 | . . . .
(Ex)i Young's Modulus in axial direction
(E )i Young's Modulus 1n circumferential direction
For each layer < (vxy)i Poisson's Retio

Gi Shear Modulus

ti thickness

The distance from the inner surface of the shell to the middle surface of

18



the ith layer is

i-1
t.
b, =—]'-+Zt.
2 . i
J=1

The shear center is located at a distance z outside of the inner surface

where

I I

2 = 2 (b, G v)/ 26t

i=l i=1
With

)y = o)y B /ED,

2 —

vy = (vxy)i (vyx)l
and hi = z - bi

the stiffness coefficients for layered shells are

T
Cy = Zl (B, &/ - "?)

T
- 2
Cio = .Z:l (vey)s By t, /(2 - v))

T
- o2
Cip = ;’:i by (Ex)i ti/(l vy)
. L 2
Gy = 2 by ()y By +/0 - v)

1
Cpp = X (B t/(1 - D)

=
1]
=

19
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( 25)

( 26)



Ca, = G5
I
—_— o2
Gps = 1Z=1 ny (E), &/ = v])
) I
Cyy = :A; G b
T
s 2 2 o2
& ® gl(ti/lz +12) (B); %/(1 - o))
I
- _ 2 2 - 2
85 = i);_l (v )y (45732 + B3) (2); %,/(1 = v])
I
= 2 2 2
Gy = Z:l (ti/lz + hi) (Ey)i ti/(l "i)
. 2 2
Cgg = El bo(65/12 + B) 6 b, ( 27)

1.6 Corrugated Skin with Ring-Stiffeners

The present analysis 1s applicable only for shells of revolution. Consequently
it does not apply to shells with stiffeners in the meridional direction unless
the stiffeners are sufficiently closely spaced. If the stringer spacing is
small in comparison to the circumferential wave length of the buckling pattern the
properties of the stiffener can be "smeared out" in an obvious way. For the

corrugated skin a similar simplification is readily available for determination

20



of some of the stiffness coefficients. However, for other parameters such as the
torsional stiffness this is not the case and certain loosely- founded assumptions
are made in the development. By variation of the guestionable

parameters in the numerical analysis it is revealed that the critical axial

load is only moderately effected.

Lot

e
w

N

Fig. 3 Corrugated Skin

The following data are required for the analysis

B Young's modulus
) Poisson's ratio
h, t, b, e, d dimensions in Fig. 3

The following notations are also used:

21



B = (b-c-a)feh-1)]

o = (1+ 52)1/2
( 28)
f = ¢ - t(le+ )
g = d-t{e+p)
The area per unit width
e = 25128 Lno+tp) ( 29)
X b 2
Distance from inner surface to neutral surface
t
z = t[E(g-f)+h(f+Bt+cxh)]/(btx) ( 30)
Moment of inertia per unit width
- i{ 3 2 g+ L +} h_ 2 e
I, =1 L Z1ebh +t ( > + Bt) ¢ + 20h (2 z)" + g(z 2)

stm-z-2% g {e-290%rm-2-200 (3

The bending stiffness in the circumferential direction is E Iy

where
R TTE ( 5
12(1 - v°)
and L is the developed width of the corrugation
L = 2g(h-1t%t)+c+4d ( 33)

Under the assumption that the shear force in the plane of the sheet is constant

the shear stifiness is G % where

% = ( 34)

oo

22



It is assumed that the torsional stiffness can be represented by that

of a narrow circumferential strip. The torsional stiffness is G J where

3
Fo= 3/ lpa+ 2 G- p/w)] ( 35)

The coefficients in the constitutive relations for the skin are

C = E t

11 X
Cip = Cpy = 615 =9
Cop = Cyy = Cy5 = O
533 = Gt
Oy = EI,
645 = 0
O55 = By ( 36)
666 GJ

The coefficients for the ring stiffened shells are found by use of equations

given above (orthotropic skin with stiffeners).

23



1.7 BSemi-sandwich

A shell wall composed of a corrugated sheet attached to a smooth skin
as shown in Fig. U is here referred to as a semi-sandwich. The shell may or

may not be reinforced by rings.

2

=)

- d /2 —~ t
- — b

Fig. 4 Semi-sandwich

Y

In addition to the problems discussed above for the corrugated skin, the
determination of the torsional stiffness of the shell wall is gquestionable.
The combination of corrugation and skin provides a closed section that

can carry efficiently a twisting moment MIl . However, this is true

only if the moment is independent of the axial coordinate. If the moment
varies, local bending 1s introduced and the stiffness is greatly reduced.
Obviously the torsional stiffness of the closed section depends on the pattern

of deformation of the shell and a rigorous solution cannot be obtained by
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use of an equivalent orthotropic shell. In the computer program based on
the present analysis a reduction factor ¢ to the torsional stiffness is an
input parameter. The data required for the determination of the stiffness

coefficients are

E, v» hy t, b, ¢, d Properties of corrugated skin as defined
above (Corrugated Skin with Ring Stiffeners).

Es Young's modulus of plane skin

v Poisson's ratio of plane skin

5 thickness of plane skin

Position of corrugation (outside or inside)

) correction factor

The following notations are also used

t., t Ix' I, J as defined above (Corrugated Skin with Ring Stiffeners)

X Y
¢ = E/[2(2 + v)]
G, = E/[2(1 + v,)]
* - -
t = Gt(h + s)/e Gy (s + t)]
g1 o= t%(g - £) + n(r + B8t + oh) Y/ (bt )
*
(' = t + s/2) for outside corrugation
€1 T * . .
~(t' - t + s/2) for inside corrugation
*
t for outside corrugation
ey = «
-t for inside corrugation
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C = E s/(1 - ui)
D = E_ s3/[12(1 - vi)]
a = 0.5(h-1t/2) (c +b - 4d)

The coefficients in the constitutive relations for the semi-sandwich (without

rings) are

Cll = Etx + C
C12 = VSC
Clh = elEtx - eEC
015 = -vseQC
Cop = C
Cop = 7vg8C
025 = —e20
Ci3 = G + G
C, = D+EI_+ Et 2 + Ce?
CMS = vy D
C = D+ BEL + Cce?
55 y 2
Cog = G + Gss3/3 + 2¢a2/[b{(b - a)/(sG.) + (C + ah - at)/(Gt) 3]
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Section 2

PREBUCKLING ANALYSIS

2.1 General Shells of Revolution

The axisymmetric prebuckling equilibrium state of the shell is govermed
by two nonlinear, nonhomogeneous, ordinary differential equations of second
order: an equation of equilibrium of forces normal to the undeformed
meridian and an equation of compatibility of strains. The eguations,
applicable to shells of general wall construction are similar to those
derived by Reissner (Ref. 4 Egs. III and IV) for isotropic shells. They

are valid for '

'small, finite rotations"”, that is the square of the meridional
rotation is neglected compared to unity. These equations are derived in

Ref. 5 .

Since the equations are solved by the method of finite~differences, their
coefficients must be evaluated at each of the meridional stations in the
finite-difference mesh. In the computer program the finite-difference equations
are arranged such that the matrix of coefficients is strongly banded about
the main diagonal: the compatibility and equilibrium equations alternate.

Hence, the differential equations have the following form:
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o Compatibility: O04d Equation Numbers: M = 2T 4+ 1, L =1, 2, 3ree.K+ 1 (K de

the number of intervals in the Tinite difference mesn)

MW" + C(M 20" + C(M3)Y + (M, 4)5" + [ONONL(M,1) + CNONL(M, 2)%8
+ CNONL(M, 3)%py + CNONL(i, L J*p 3" + (CNONL(M,5) + CNONL(M, 6)*p (37)

+ CNONL(M,7)*ay + CNONL(M,8)*rV + CNONL(M,9)*pl8 = FO(M)*xV + F1(M)¥*p

waexe

c{M,1) A..x

22
c{M,2) = Aj
. 2
' [ - - '
(™. 3) Alor Alzr/Rle AT /r

c(M,4)

L}
2r + A22r

n

u

A23r

CNONL(M,1) = A2'3r + T (A23 * Ay, - Al3)

[}

CNGNL(M, 2) (A2l+ - Al3)r/32
Ay o7/Ry
.2
Hat T \ (38)
Ayt - Azhr/RlR2 - AL /r - r/R2

CNONL (M, 3)

CNONL(M, &)

CNONL(M, 5)
>~ L - t ' - 1 ’
CNONL{¥,6) = Azl,rr/232 + AT /2Rl BT /:zR2 +r'/2

g 1 I - ]
CNONL (M, T) Alzr/Ra + AT /Rl 2A, . ¥ /R2

CIONL(¥,8) = At\ler'éna/rnl - All/r + Alzr/R:LRe

. 2 2 2
CNONL(M,9) = A22r(r /Rle -2r'c) - AL T r!
7o (M) = Allr'/Re - Alzr'/Rl - Ai2r/R2
= 2 ' 1
(M) = =r"(Ay,r /Rl + 2A T /R2 + Aézr/R2)
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e Equilibrium: Even Equation Nuwrbers: M =2l +2, L =1, 2, 3,...K+ 1

C(M, 1) y" + [CNONL(M,1) + CNONL(M,2)%8]y' + C(M.3)y + C(M.1)p"
+ [CNONL(M,3) + CNONL(M,4)*ay + CNONL(M,5)*pls + [CNoNL(M,6) (39)
+ CONONL(M, T)*8 + CNONL(M,8)*Ay + CNONL(M,9)*rV + CNONL(M,10)*p 8

= FO(M)*xV + F1(M)*p

whexe

C(M:l) = —A231‘
CNONL(M,1) = -A2'3r + r'(Azh - Al3 - A23)
CrONL(M,2) = (A, - A13)r/32

= . i2 « Al pt
C{M, 3) /R, + ALY [ + Al3r/RlR2 Afgr
ciM,b) = A33
CNONL(M,3) = Ayw + T'Azg
CNONL(M, 4) = A 3r/R2
CNONL(M,5) = rer'A23 (50)
CNONL(M,6) = Ayr' - A31+r/R R, = AT’ /r
CNONL(M.,7) = ﬁur/zn * Ay T /23 - 3A,T /232
CNONL(M,8) = 2a,,x /32 - Ayr /Rl - Ai3r/R2

CNONL(M,9) = Alh/r - 1\13(:r'21%2/r;zl + r/er_zQ) - r/R2 - %R /r

3‘rr2+£\ r(2r' -r/RR)

' ' ' - '
r' o Apgx /Rl + Al:‘}r/R2 AT /R2

CNONL(M, 1.0)

Ay, - Al3)(l - 2r'2)r + A/

n

Fo(m)

F4) = r26\é3 TRy + Ay (2/Ry + L/R)) + Ay xRy = Ay x'/R,)
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The coefficients Ai are obtained from a semi-inverted form of the

J

constitutive equations:

\ e N 3\
(e Ay B O A5 Ay O (Nl
& Ay By O Ay Ay O N,
. o 0o B. O 0 0 N
4 12 _ 33 4 12 & (1)
M f Ay Ay O Ay Ay O N
My My A O Az Ay O "2
] o o o0 0 o0 B

The AiJ are easily calculated once the CiJ (Eqs. 1) are known.

The designations C{M,N), CNONL(M,N), FO(M) and F1(M), (M = 2I+2 or 2I+1l,
I=12 3 ...K+lendN=1 2, 3, ..) for the numerical coefficients
are used in the computer program. The row number M denotes the mth equation
in the set of 2K + 6 finite difference equations generated by dividing the
meridian into X intervals, satisfying equilibrium and compatibillity at the
K + 1 points in the domain and satisfying two boundary or symmetry conditions
at either end of the meridian. Even equations (M = 2T + 2) are eguilibrium
equations and odd equations (M = 2I +1) are compatibility equations. The

quantity by 1s the difference between the total stress function ¢ and the
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value of ¢ calculated from membrane theory for uniform internal pressure:
= - *p! |
Ay § = rV¥r Ra/r (42)

A star * denotes multiplication in the above and in the following equations.
The computer program applies only to shells with constant properties along
a meridian. Hence Aij are zero in the calculations.

In the. prebuckling equilibrium problem the boundary conditions are expressed

in the form

BALL*y + BA12*Ml + BAl3*uH + BAlh*ﬁ = vA

BA21*{ + BA2@*M1 + BA23*uH + BA24¥p = MlA

(43)
BB1l*y + BBL2¥M, + BBL3*u, + BBl*g =
EB21*y + BB22%M, + BB23%u. + BB2U*g = Mg

Equations (43 a, b) are the boundary conditions at the end A of the meridian
(see Fig. 5). Equations (43c, d) are the boundary conditions at B. The right
hand sides are shown as stress functions and moments at A and B. However,

they can be considered horizontal displacements and rotations. The boundary
conditions are given in this general form in order to permit for instance
treatment of composite shells in which the elastic properties of adjacent
structures are accounted for through their stiffness coefficients. For cases in
which the axial load 1s applied eccentrically with respect to the shell

reference surface, the resulting bending moments e, VA and ey VB are included

in MlA and MlB’ respectively.
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Tt is necessary to write Egs. (43) in terms of y and g only. The

boundary condition (43a), for example has the form

c(L,2)y' + 6(1,3)y + €(1,5)p" + [CNONL(1,1) + CNONL(1,2)*p ()

+ CNONL(L,3)*ay + CNONL(L,4)*p1 B = FO(L)*xV + FL(1)*p + y,

where

1]

c(1,2)
¢(1,3)
c(1,5)
CNONL(2,1.)

-BA12*A2 + BA13*A22r

3
- ] t
BALL BAlz*Al3r /r + BAL3*A, ,x

BAL2*A__ + BAL3¥A T

33 23
BAL2XA 5 x* [z BAL3¥A, r' + BALL

i

(45)

CNONL(1, 2) BA12*A3u/ﬁa + BA13*A2Ar/232

CNONL(1, 3) —BAlE‘X'Als/Rz + BAl3'X'A12r/Rz

2
fow o : fae
r'r BA13*A22r by

CNONL(1, &) BAL2*A,

3
ro{1) = BAlEX'Al3/R2 - BA13*A12r/R2

2
Fi(1) = Balewa,.r /R, - BAl3*A22r3/R2

The row designation 1 indicates that BEq. (#l4) is the first in the set of
2K + 6 differential equations corresponding to equilibrium and compatibility

at K + 1 polnts in the domaln and 4 equations for the boundary conditions.

The method of finite differences is used to transform the goveraing
differential equatlions into a set of nonlinear algebraic equations. Constant
station spacing is used, and the derivatives of the dependent variables B and

y are simulated by three-point finite difference formulas.
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The nonlinear algebraic equations are solved by the Newton-Raphson method,
of which an expianation is glven in Ref. 6. The linear system which must be
solved for each iteration in the Newton-Raphson process is characterized by a
matrix of coefficients which is strongly barnded about the main &iagonal. ‘This
system is solved by efficient subroutines called FACTéR and S¢LVE.which

were written by Brogan (Ref. 7).

2.2 Special Prebuckling Analysis for Cylindrical Shells

In the case of general shells of revolution the prebuckling solutlon is
obtained by use of a finite-difference analysis. The resulting nonlinear
algebraic equations are solved through an iterative technique. For the
cylindrical shell, however, the coefficients in the prebuckling equations
are constant and thus an explicit analytical solution is readily

avallable. For economy in the numerical analysis this solution is utilized.

For cylindrical shells, prebuckling equilibrium is governed by the

equation

(Ml)xx+%N -N,w_=-p =0 Geé.)

where
- K
Ny Cip e+ Cip ep + Oy
= K
s Cip g +Cpp 6% Coi ™y a7 )

- K
My Cy) € + Cig ex + O ®y
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and
e, = w/r
(:8)
Kl - wxx
If an axial load N (positive for tension ) is applied to the shell
N = N (11-9)

1

By combination of Egs. (46-49) the equilibrium equation can be obtained in

the form

W -hsw 4 oW = £ (50)

XXXX

where

rc, ¥ + (2 C1aCqy = C1aloy - Clvl_c_li)]

).}.S = 5 —
r(C33Cy, - Cp”)
2
L P = (€12Cpp - C7p)
) 2 (c..c,y - C3)
TSty T My
prcC -NC
£ = 11 12 (51)

>
r (€46, - 7))

For the case S + T > O the solution of this equation is

w = W o+ Bl cosh alx cos agx + 32 sinh alx sin aex + B3 cosh a;x sin a2 X
+ B) sinh a x cos a x (52)
where
- - 2
w o= 7 (rcpyp - cM/(e,C,p - Cpp)
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a, = (s - T)l/2
(53)

a, = (s + T)l/2

In the case S + T < O
W = W o4 B, cos a;X + B, cos a ¥ + B3 sin a,x
54
+ Bh sin a2x (5 )
where
1
(55 )
_ Y- 2.1/21-1/2
o, = [{-s-6*-10"%]

Depending on the sign of the discriminant (S + T) one of the solutions
Egs. (52) or (54) is selected and substituted into the boundary conditions given by

Eqs.(%3). For cylindrical shells Eqs. (43) become

BALL(rH), + BAlz(Ml)A + BAL3(w), + BAlk(w ), = ¥y

BAel(rH)A + BAee(Ml)A + BA23(W)A + BAzh(wx)A = (Ml)A

BBL1(rH), + BBL2(M,), + BBL3(w)y + BBLA(v )y = ¢ ('56)
BBel(rH)B + BB22(M1)B + BB23(w)B + BBzu(wx)B = (341)B

By use of Egs. (47) and (48)

2
| c o]
‘ _ 1k 14 v
f Moo= (G, - EII) Yo T O - (Cp0/ €y - Cys) 7 (57)
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Furthermore

rH -r(Ml)x + Nrv,

C2

Tl
Nrw, -lr (Chh - E‘“)

11

W

- ¢ €12%4

XXX

.. Cls) vl

11

(38)

Egs. (57) and (58) together with Eq. (51) or (54) are substituted into the

boundary conditions (Eqs. 56). This results in a linear equation system

from which the integration constants Bi

are obtained

N -1
By = Exij] {?J}

For brevity the following notations are {ntroduced

¢

Cy,

For S+T>0

F, = cosh (alL) cos (aéL)
F, = sinh (alL) sin (a2L)
F3 = cosh (alL) sin (a2L)
F, = sinoh (alL) cos (a2L)
a = a2 - 82
3 1 2

85 = 8233 + alau

36

2
Chy - ©114/C1y

For

cos

cOs

sin

sin

36 = a.a

12 = (Cp 0y /Oy - Cp)/r

S+ T
(a,1)
(at)
(a,1)

(ajL)

173

< 0

- 825.4

(59)

(60.)

(61)

t T



SN

=
1t

= BBl3 - BBl2 012

= BB14 + BB1l r(N + C

= BBl2 644

i

For 3+ T>0

a3 Ch4 + 012
r [a2 (N + 012) ag Chh]
r [al N+ 012) - ag éhh]

12)

1t

B, C

BB23 - B o0

12

BB2k + BB2L r(N + C

12)
BB22 Chh

For S +
o _ -
&y Gy + G0

Cl2

+

o _
as Cyy
r (N+C. .- a® C )
1 ~uh
22
12~ T2

12

I'(N+C C)-l—)-l-

The integration constants B, in equations (51) and (54) can be determined

from Eq. (59). The coefficients Xij and Yj in this equation are
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=F G + (glFQ + aEFl) G, + (a_F

= F H + (ath - a2F3) H, + (a3F

=F_H + (alF2 + a2Fl) H, + (a_F

For s+ T>0

Xy = BAL3 + BAl2 K|

X,, = BAl2a auh

Xl3 = BAlk a, + BAll K,
Xy, = BAlﬁ a) + BALlK;

=F,G + (ath = a2F3) Gy + (a3Fl

=F G + (ath + alF3) G2 + (ahFl

371 33

= F,G + (alFl - a2F2) G2 + (a3Fu

1

=F H + (ath + alFS) H2 + (auFl

38
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-+

-+

X;
Xop

X23

N

aLFFE)G_Q)

BA23 + BA22 Ki
A
BAZ2 a2 + BA2L Ké

L
BAZk a) + BA2L K,

+ (a6F)+ - a5F3)G}+

a3F2)G3 + (ath + a6F3)GlF

ahFh)G3 + (aSFl + a6F2)G4

ahF3)G3 + (a6Fl - ast)Gu

ahFe)H3 + (a6Fh

a5F3)HLL

a3F2)H3 + (asFu + a6F3)H4

auFu)H3 + (aSFl + a6F2)Hu

31 33
= F,H, + (alFl - a2F2) Hy + (a3FLL - a4F3)H3 + (a6Fl - a,jFa)HLL
Y, = -BA3w - BA12 (v 612 + N Cpy) + gy
Y, = - BA23 w - BA22 (w 612 + N clh) + (Ml)A - e, N
Y, ® - W Gy - BBI2 N Cp) + ¥y
Yy, = - W H - BB22 N Cp) + (M); - ey N

(65)
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11
12
13

X

For S+ T<O

BAL3 - BAI2 K| X, = BA23-BAZ2 K
'BA13 - BAI2 K, X,, = BA23 - BA22K,
a) (BA1Y + BAll K3) Xp3 = 8 (BA2h + BA2L K3)
&, (BAlk + BAlL Kh) X, = & (BA2L + BA21 Kh)
{
F, - aF. -G 8°F 4G asF
1 27173 3 171 47173
F_ - aF -G a2F + G a3F
2 2 T2k 3722 4“2 7y
2 3
F3+ 2alFl—G3 al F3-Gll_al Fl
F aF, -G 8°F -G & F
y t Sp By T Ly 8y Hy T E) 8y Ky
2 3
Fl - o alF3 H3 al Fl + Hh al F3
2 3
F2 - > 3.2Fl¥ H3 a2 F2 + H)+ a2 F,_L
2 3
F3 + H2 alFl H3 al F3 Hl;. za.l Fl
P + H.aPF_ -H a2F—H a3F
4 2722 3274 L T2 2
- w (BA13 - BA12 C,,) -~ BAL2 N Clh/gll + g,
- % (BAe3 - BA22 § ) - BA22 N C),/Cyy + (M), - e, N
- W G - BBI2 N cm/cll + 4 ( 66)

H - BB22 N Clu/cu + (Ml)]3 - ey N
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Section 3

STABILITY ANALYSIS

3.1 Stability Equations

Donnell-type equations are used in the stability analysis. These

equations are based on the following assumptions:

1. Love's first approximation
2. the flexural and extensional strains are of comparable magnitude
3. the shortest wavelength of deformations small in comparison

to the minimum radius of curvature

The first assumption is basic to almost every engineering analysis of shells.
The second assumption has two important consequences: (1) Two of the three
compatibility equations for the deformed middle surface may be approximated
by the similar equations for an inextensional deformation of the middle
surface, and (2) a moment resultant divided by a radius of curvature of the
middle surface, or multiplied by a change in curvature can be neglected
compared to the normal stress resultants. The third assumption permits the
approximate solution of the in-plane equilibrium equation by an Airy-type

stress function.
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The Donnell-type equations are used here rather than more exact stability

equations for the following reasons:

1.

A stress function ¢ can be introduced, which leads to a reduction
in the number of dependent variables in the analysis. In the
Donnell-type analysis the two dependent variables are )

and w ; in a more exact analysis the three dependent variables

are u, v, and w. The consequent reduction in the number

of finite-difference equations leads to reduction in the

computer core storage and time required for calculation of

the buckling load.

The Donnell-type analysis does not include derivatives of the
radius of curvature of the shell. Such data as Ri s R{ » and

Ri" are needed as input for the more exact analysis. These
uantities are difficult to obtain for shells whose meridians
q

are not defined by analytical expressions.

The Donnell-type analysis yields sufficiently accurate results

for almost all engineering applications. It is not accurate

when applied to shells which buckle in an almost inextensional
mode, such as shells with weak support at the edges. However,

in most engineering applications, inextensional buckling modes
may be eliminated by proper design of the structure which supports

the shell.
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More exact stability equations, which are not restricted by all of the
assunmptions basic to the Donnell-type of analysis,are given in Appendix A.
In a Donnell type analysls the governing equilibrium equations are:
Ve ! N =
(er) r'N, + N7, 0
* ' ' =
NS+ (era) + TN, 0 (6
- "o oM ' ' Ve Ve
(x4 M2/r + (r M2) + M, +12MT/r
=3 * - -
rN Kf + Nkt = Nygry = Nygy)
and the cospatibility equations are
't . ' M =
(rnz) T 0
Ko+ (rxl2)' +r'n, = 0 (68)
- ” - a0 ] ' ’l ] .
(r32) Cl/r + <I‘ Cl) + 512 + T Glz/r

= vl + w4 )

Equations (67) and (68) are almost analogous; one obtalned from the other through

ny = Ny n ol "o " Npp

=My & — My ¢ ™ Mp

(69)
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Equations (67a) and(67b) and Eqs. (68a) and (68b) are satisfied approximately

by the following Alry-type stress and curvature functions:

N, = g‘;/ra-o-cp'r'/r

1
Ny, = ¢
N, = = (¢'/x)
o= oW
xy = W% et /r | (70)

"12 s - (w'/r)'

According to Koiter (Ref.8) W can be coosidered a "curvature fuaction",
analogous t0 a stress function. There is no need to define it as the normal
displacement. However, 1n the present investigation, where the displacements
from the prebuckled equilibrium state are considered to be infinitesimal, w
does represent the actual normal displacement within the accuracy of the

"shallow" shell eguations.

The final governing equations are written in terms of ¢ and W by
insertion of Egs. (70) into (67c) and (68c), with the use of the

constitutive equations (41).
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Two ordinary differential equations of fourth order result when the

relations

= (s) sin n
® % © (1)

w o= wn(s) sin nb

are inserted into the partial differential equations of compatibility and

equilibrium. The final equations (two equations for each meridional station

as explained above) have the form:

B 1) G + BN 2)G" + CB(NL3)¢" + CB(MH)g' + CB(MM5)g (72)

+ CB(M.G)in + CB(M, TIW™ + CB(M,8)w" + CB(M, 9)w* + CB(M,10)w = O
The coefficients of ¢ and its derivatives in the compatibility equation are

cB(s1) = =T Ay

H
cB(,2) = 1A,y = By " 2A22) - 2ri),
y - 2A,. )
B(1.3) = r'zAn’/r ¥ oP(h, + Ay * B, )/ + rK(hyy = Ao * 2
- 2c'A) - rA:,é2 - 2r'AL, + r'Al, + £y
2 ,,2
2 . _ '
ca(M, i) = - All(r'3/r + 2r'K) + Azl(r'K onr'/r°)

2 2 - t Al
- B33n2r'/r2 + Aél(arK +o°f/r - v'/r) - £'Ay

+ Ailr'e/r + n2353/r + £,
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CB(M)5) = na{.All(Zr'a/r2 + K - n2/r2) + AEl(K + 2r'2/r2) -
73
+ B33(K + r'a/rz)}/r + naAal/r - r'Ailnzlra

- r'B! n2/r2 + f

33 3

The coefficients of the w-terms in the compatibility equation and of all the
terms in the equilibrium equation can be obtained through modification of
Eqs. (73) as shown in Table 1. Table 1 gives the changes which thereby

mist be made in the indicies of the AiJ and in the definitions of fl' f2, and f3.

The designation CB(M,N) for the coefficients is also used in the computer
program. The row number M denotes the mth equation in the set of 2K + 10
finlte-difference equations generated by division of the meridian into X
intervals, satisfaction of compatibility and equilibrium &t the K + 1 points in
the domain, and satlsfaction of U boundary or symmetry conditions at each end of the
meridian. In the computer program odd equations are compatibility equations
and even equations are equilibrium equations. The computer program is

speclalized for shells whose properties are constent along a meridian. Hence,

1 . 1 — n = ] = .
in all calculations AiJ = AiJ Bkk 0

Boundary Conditions

The formulation of the stability analysis must be compatible with the

formulation of the prebuckling analysis. Therefore, the boundary conditions
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Changes in Ai

Table 1

J

k

and Definitions of f, for the Coefficients

CB(M,N) of the Compatibility and Equilibrium Equations

Compatibility Equilibrium
c,p-tems w-terms q;—terms w=-terms
CB(M,N), N =1 to 5 |CB(M,N), N = 6 to 10 [CB(M,N), N =1 to 5|CB(M,N), N = 6 to 10
replace by by by
N N+5 N N+5
A Ay A Ay
Mo M3 Ayo A3
Ay Aoy Ay Ag,
Aop Aa3 A3 A33
1333 0 o} Bgg
£, = fy = rk} £, = -1k3 f; =N,
= = p! = - ' = !
f2 f2 r ch + aorK f2 r k{ f2 T N2O
= = - 2 = 2 z -
£3 = f3=-n }q/r f3=n ch/r £3 naNzo/r

WI
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for the stability analysis are treated in a manner analogous to that explained

in the section on prebuckling analysis. Boundary conditions are written in

the form
BA1l BAl2 BAI13 BAlL BAlS BAl6 BAl7T BA18 rH
BA21 BA22 BA23 BA24 BA25 BA26 BA2T BA2S L
BA3L BA32 BA33 BA34 BA35 BA36 BA37T BA38 U,

BAkl  BAk2 BAR3  BAML  BAL5  BAW6  BAWT  BAL8 B & =0

BB11 BB12 BB13 BB14 BB15 BBl6 BB1l7 BB18 4

BB2l. BB22 BB23 BB24 BB25 BB26 BB27 BB28 N

BB31L BB32 BB33 BB34L BB35 BB36 BB37 BB38 u,
N

BBkl BBL2 BB43 BB4W: BBL5 BBUE  BBLY BgigJ ka_J

S_———

12

The first 4 of Egs. (74) are the boundary conditions at A (see Fig. 5). The
last 4 are the boundary conditions at B. The boundary conditious are
expressed in the form given by Egs. (74) in order to permit the treatment of
shells bounded by elastic rings as well as shells for which more simple
boundary conditions are assumed. From Egs. (74%) it can be seen for example
that "simple-support" conditions at the ends A and B of the meridian can be
simulated by the specification BA13 = 1.0, BA22 = 1.0, BA35 = 1.0, BAW8 = 1.0,
for the non-zero coefficients at A; and BB13 = 1.0, BB22 = 1.0, BB35 = 1.0,
and BBYUB = 1.0 for the non-zero coefficients at B. .All other BAij's and
BBij's are set equal to zero for this case. Physically the above-specified
input parameters correspond respectively to uH = 0, M1 =0, v =0, and

rV = 0 at A and at B.

If the shell is supported by elastic rings at the boundaries, the BAij

and BBij are computed from ring equations given by Cheney (Ref. 9). Formulas
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for these coefficients are presented in Ref. 10 and will not be repeated

nere. They are valid for any ring, the centroid of which coincide with its
shear center. The ring centrold need not coincide with the shell reference
surface. It should be emphasized that the BAij and BBiJ corresponding to

the boundary conditions (Eqs. 43) of the prebuckling equilibrium problem

(wave number n = 0) are not the same as those corresponding to the boundary
conditions (Egs. T4) of the stability problem (n # 0). The effective stiffness

of the ring depends on the wave number n .

When the quantities appearing in the column vector of Eqs. (Th) are
expressed in terms of o) and w, the boundary condition equations are of the
same form as the equilibrium and compatibility equations, (Eq. 72). The
expressions for u and v in terms of ¢ and W are obtained by elimination

of v and the s~derivatives of u from the strain-displacement relations

6 = ou'+ w/Rl + B¥'

& = ur'/r + v'/r W/R2
1o = w/r + r(v/r)' + aow‘/r
The following equation is found:

w/r o+ u(rk + r'2/r) = g p - TeptFle + rv'kE - r'w..'/R2 - B/

The circumferential displacement v can be found from Eq. (75b) and

Eq. (&1).
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The forces and displacements normal and tangential to the middle surface
can be written in terms of ¢ and w. Table 2 gives the coelfficients of ¢

and its derivatives. The quantities u u. » u_ , and uu in the sixth

1’ 72 3

row (v) represent the corresponding coefficients shown in the fifth row

(u). With regard to the Aij and B,, » the changes shown in Table 1 must be

made in order to derive by analogy the coefficients of the w-terms. The

functions fh through fl are given in Table 3.

0

3.2 Solution of the Tquations

The method of finite differences is used to solve the linear
differential equations of the form (72). The set of finite diiference equations
is arranged as described in the section on prebuckling analysis. Ilence the

matrix of coefficients is strongly banded about the main diagonal.

The derivatives of ¢ and w are simulated by 5-point central difference
formulas and the coefficients of 2M + 8 algebraic equations are stored in a
condensed matrix A. The 2M + 8 equations correspond to the compatibility
equation and the equilibrium equation at M points on the meridian, and 8
boundary conditions, four at each end of the shell. The stability equations
for n = 0 are derived by appropriate modification of the nonlinear prebuckling
equations. These stability equations are given in Ref.ll and will not be

repeated here.
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Table 2 Coefficients for Tangential and
Normal Forces and Displacements

when n ;é 0
cP.u ‘P" (pl ¢
2
er r' -a/r
r'(A ~A -A 2 , 2 2 2.,
R erAg, th.3l 32 r'2Al‘_l/r-r'4¢\:'31 + Aal(rx-m /r) + f), -r'n (Akl + A31)/r +n A3l/r + 15
| "A32 o
N, -n or'/r
, . 2,2
M A Ay T /x I’3ln> /r
a 2 Y 2
" -rA22/F -rA?'_?_/F {.Anr'a/r + B33ﬂ2/r + Azl(rex"'n +r'8)/r {'1‘ n ('21 + oAy * 333)/1‘
“r'A fé} /¥ 402 Aél/r + r.{} /¥
v r'ul/n (r'uz-rAaz)/n r'u3 - r'Azl)/n (r'uk + Aaln?'/r)/n + fg
w ! f9
5 I 10

@ F =xK + r'2/r - n2/r
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Table 3

for the Boundary Conditions

Definiti_ons of fk

@ = terms W = terms 1
£, = B £, = N, + B66n2/r
£5 = - naﬂo/r £5 = - nar'B66/r2
fg = 0 fg = riy
£, =0 f, = - r'/R2 + neso/r
f8 = 0 fe = 1.0
£y = 0 £y = /(any)
flO = 0 flO = 1.0
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The stability equations in finite-difference form are a set of linear,
homogeneous, algebraic equations. There exist nontrivial solutions of this
set for discrete values of a parameter, in this case a load parameter. The
lowest eigenvalue is the buckling load. Its value can be obtained by various
metiiods. The determinant of the coefficient matrix can be plotted versus the
load in order to find the point where its sign first changes. On the other

hand, when the eilgenvalue problem has the form
(A + AB)x = O (17)

an iteration scheme (Ref. 12) can be employed to calculate both the lowest

eigenvalue and the corresponding eigenvector.

In this analysis in which nonlinear prebuckling effects are included, the
eigenvalue problem does not have the simple form of Eq. (77). The eigenvalue
parameter A does not appear linearly,but manifests itself through its influence on

the prebuckling meridional rotation Bo’ stress resultants NlO and N and changes

20’
in curvature MlO and MQO ;» which appear in the coefficients of the stability
equations. These quantitites are related in a nonlinear way to the loading.
llowever, there are many practical shell structures which buckle when NlO and
NQO are very close to the values predicted from membrane theory and when

Bo is so small that linear membrane theory is still accurate. In such cases the
stability equations can be approximated by equations of the form of Eq. (77) and

the power method (Ref. 12) can be used to find the lowest eigenvalue and

corresponding eigenvector with a fair degree of accuracy.
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When the prebuckling bending stress and other nonlinear prebuckling terms
are important, such as in the case of bifurcation buckling of externally
pressurized shallow spherical caps, the power method can be used to advantage in
the following way: The determinant D of coefficients of the stability
equations is evaluated for increasing values of the loading parameter p .
Figure 6 shows a plot of D versus ¢ . There is a p-interval, Py to P
in which D first changes sign. The load for which D = O is approximated by
linear interpolation from the end-points Py and Po of the interval. The error

in the buckling load is now Ap = p, - p If Ap/pcr <1, thenB_, N

3 cr 10
and N20 can be expanded in Taylor series about p3:
Bo = (By)y+ 2(apy/dp),
= 78
Yo (Nyg)3 + 2(ayo/ap)y (78)
= d
Nog (Nyg) 5 + 2(ai0/de) g
where z = p - Py There are similar expansions for the prebuckling changes
in curvature "o and Hoo - The derivatives dBO/dD , etc. are calculated

from interpolation formulas such as:

<le0> - Ll(NlO)2+ 1.1 . ) _LE(NlO)l (79)
dp /4 L, STEP L~ L, 10’3 ~ I, STEP

Subscripts 1, 2, and 3 refer to values corresponding to P Py and p3
The quantities Ll ’ L2 , and STEP are shown in Fig. 6. A value for z is

calculated from the linear system
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(A+ 2zB)x = O (80)

through use of the power method. Since Ap/pcr << 1, convergence is indeed
rapid. The new value of p 1is p = p3 + z. If [z/p3| is less than some
preassigned number ERR, calculations for the eigenvalue terminate. If not,
new derivatives (dBO/dp)h , etc. are calculated, and a new correction factor

is calculated from Eq. (80). Iterations proceed until lz/pl < ERR.
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Appendix A
MORE GENERAL STABILITY EQUATIONS



Ny, Np, Nyp = Noy

My, Mg, Mxp = Myx
Q}{ ] Qo
Nxo0» Ngo

P

NOTATION

coefficients of constitutive equations (see Egs. A2)
horizontal (radial) force/length (see TFig. 5)

number of circumferential waves in buckle pattern

incremental siress resultants (see Fig. 9)

prebuckling stress resultants
normal pressure, positive outward
radius of a parallel circle

meridional and circumferential radii of curvature

(see Fig. 7)

circumferential, meridional, and normal displacement

.components (see Fig. 8)

horizontal (radial) displacement (see Fig. 5)
vertical (axial) displacement (see Fig. 5)
vertical (axial) force/length (see Fig. 5)
arc length, meridional coordinate (see Fig. T)
normal coordinate (see Fig. 9)

r

r



Ex’ €pr Yy middle surface strains

x0
Ky s K s Kxp curvature changes
-1 1 1
p’pl’pz r’rl’rz
0, ¢ circumferential and meridional coordinates (see Fig. 7)
(4)0 ’ wx
rotation components (see Fig. 8 and Egs. A3)
Wz11 Wzo
Wpo prebuckling rotation

Subscripts and superscripts

() differentiation with respect to arc length x
( )x pertains to meridional direction
( )0 pertains to circumferential direction
() 0 prebuckling quantity
A2



Al Introduction

As was discussed in Section 3, Donnell-type stability equations give reasonably good
solutions for almost all shell buckling problems encountered in practice. Ilowever,
more accurate stability cquations are needed if the shell buckles in an almost
inextensional mode. Sobel (Ref. 13) has derived more general stability equations
for axisymmetrically loaded isotropic shells of revolution of constant ithickness.
These equations are extended here to cover orthotropic shells of variable thickness.
The resulting equalions are identical to those derived by Kempner (Ref. 14) except
for terms involving rotations around the normal which were not considered in
Kempner's analysis. Three stability equations in terms of the three displacement
components u, v, and w are obtained through combination of the equilibrium
equations with the constiitutive and kinematic relations. These equations are

presented in Section A2.

It may be desirable to invesligate the effect of certain terms, such as rotations
around the normal. Therefore the following parameters are introduced in the

final equations:

1, if effects of terms involving rotation around the

normal are included

Opn =
0, otherwise
1, if the prebuckling rotation is included in the
equilibrium equations
5 =
w

O, otherwise

A3



EL

°BC

0 ph

fl’

if the prebuckling rolation is included in the

kinematic equations

olherwise

if the prebuckling rotlation is included in the

boundary condition for Qx

olherwise

if the normal pressure p is hydroslatic

olherwise

if the stability equalions are to be specialized to

Donnell-type equations

otherwise
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A2 Stability Equations (Ref. 13)

[

- 5 € = =
M npNOwa php(€x * €9) 0
Constitutive Equations

N | [p D 0 D D o 1 ¢

X i1 12 14 15 €x
Ny Do Do 0 D5 Dog 0 g
Neol _ |0 0 D33 0 0 Dag Yx0
My Dy Dis 0 Dyy  Dys 0 “x
M, Dis Dos 0 D5 Dgg 0 g
MxoJ Lo 0 D, 0 0 D66J | 26y

Equilibrium Equations

Ny # 7N, - Ng) + npeN, + 6d{ - Moo My - M)

- - - 0 -
nPPML g = PNg®g = 0PN g + O Pwy = OpanANgaw o b

2YNyy + Nyg = naNg + 8 {-2vp M o - oM
- -6
FRPM = PN @y = 0PNy W ho + OpnPey

“OaNNpo@,q * OpNINyg + Nyglw, o+ 0 N o o}

2 2
ple + pzNe -n"pM, + Znprx + 2anX

0 0 0

—plpz(Mx - M0> * Y(ZMx B MG) * Mx * 60.)(ny * Ifxx)“’oo

+6waw00 ¥ 6wnpNx0w00 * WNxO * NxO)wo * Nwao

AS

(AL)

(A2)



@ Kinematic Equations

€ T VPVt 0000k, % T TVt Y
60 = npu + yv + pzw wx = npw + p2u
~ = - L -— (5 =
YXO Yu + u npv + wOwa EL le npv (A3)
Kx=(—p1v-plv)6d+w w5 T U=
= (-npp,u - v)é —n22 +
KO sz 'YPl d pw YW
2Kx0 = (_yplu + 2yp2u - pyu npplv )(Sd + 2nypw - Z2npw

o Stability Equations Written in Terms of Displacements

Inscrtion of Egs. (A 2) and ( A 3) into Egs. (A 1) results in the following stability
cquations for a variable thickness, orthotropic shell of revolution subjected to axially

symmetric loads:

alv + azv + u3v + a4u + a5u + aGW + a7w + usw + :19w = 0
blv+b2v+b3u+b4u+b5u+1)6w +b7w+b8w= 0
clv +czv 03v + c4v + 05u + cGu + c7u
+c8w + cgw + clOW + cllw + Clzw =0
where
~ = —_ A *
a, = a, —a, - a, - a, - a, s i=1,...,9
i i i i i i
~ — _ A *
b. = b, -b, -b, -b, -b , i=1, , 8
i i i i i i
- = - N *
c, = ¢, -¢C, -C, -¢C, -¢C, s i=1, , 12
i i i i i i
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and the non-zero values of these coefficients are

3) = dy - dgpy0y

a, = dgY - 2dgp,04q - d¥pi0q + dg - dgp 0y
fg = dy¥ - dgp 0y - dy(vp )& + dg¥ - dybi8y - dg¥p 8y - mp(dy - dy4015)
iy = mp(dy - dgp,0y) + dg - g,y

Ay = nldyp - d (ppy) 05+ dgp = dgppy04] = YIdg = dy4(20y = P14

i, =d

6 3
“7 = d4'}’ + d7

i = dop. +dp. +d¥ - n2dp +dy - 2nd p

dg 1717 %P2 T Yy 4 8 10

8. = d.p. +dp. - 202d.pp + d_p, + d p. - n°d_p> + 2nd. Vp

‘9 1”1 2P2 4 571 6”2 8 10

by = -np(eg - eypy0,) + e - egpidy

1)2 = "n[elp = 62(/3{31) éd} + (34’)/ - e.")pléd - eG'Ypl(Sd - nf)(e7 - e8916d)
by = ey - e,ny04

b, = - . - - e p O - 6

by ey * e Y(2py = py)0y - egpdy + eq — egpyOy

g - _ : o o i : ~ - 6

be ey *+ e, ¥(2b, - p)0g + e ¥(20, ~ p )0y + mple, ~ ecp,0 )

-eqY *+egy(2p, - py)0y

b6 = —2ne2p + eg

b7 = +2ne2(vp - p)y + eG’Y - 2ne8p

b, = +2ne (yp) + ep, +ep, - n’e p2 + 2ne.Yp
8 2 3”1 472 6 8
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A3 Boundary Conditions

The cquations governing the stabilily of a shell of revolution have been expressed in
terms of the displacement components u, v, and w. lIlence, it is also necessary to
express the natural boundary conditions (ﬁxo , Nx s Qx, Mx) in terms of the dis~
placements. This is effecled through use of the following equations:

v + Lu+ i u+ i,w+iw

= Ny -9 ) 4 5 7 8

x0 x0 d'OZM
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,_
|
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It
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X 1 2 3 4
where
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L, = np(f2 - édp2f4)
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It is often convenient to represent the boundary conditions in terms of axial and radial
components instead of tangential and normal components. The relations between these

two representations are as {ollows:

N cosop* - sin ¢ *
L COS &% - Q_sin ¢

i

I

= N ; * 4 0 *
A% NX sin ¢ Qxcosd)

U ¥ vcos ¢ + wsin ¢
u, = v sing - wcos ¢
where
* =
é ¢+ wy
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Fig. 7 Notation for a Shell of Revolution
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